TFE4188 - Lecture 4 Analog frontend and filters

The world is analog and is written in the mathematics of calculus ¹

$$\oint_{\partial\Omega} {f E} \cdot d{f S} = rac{1}{\epsilon_0} \iiint_V
ho \cdot dV$$

Relates net electric flux to net enclosed electric charge

$$\oint_{\partial\Omega} {f B} \cdot d{f S} = 0$$

Relates net magnetic flux to net enclosed magnetic charge

$$\oint_{\partial \Sigma} {f E} \cdot d\ell = - {d \over dt} \iint_{\Sigma} {f B} \cdot d{f S}$$

Relates induced electric field to changing magnetic flux

$$\oint_{\partial \Sigma} {f B} \cdot d\ell = \mu_0 \left(\iint_{\Sigma} {f J} \cdot d{f S} + \epsilon_0 rac{d}{dt} \iint_{\Sigma} {f E} \cdot d{f S}
ight)$$

Relates induced magnetic field to changing electric flux and to current

¹ Maxwell's equations

 $\psi(x,t)$

Probability amplitude of a particle

$$rac{1}{2m}rac{\hbar}{j^2}rac{\partial^2}{\partial^2 x}\psi(x,t)+U(x)\psi(x,t)=-rac{\hbar}{j}rac{\partial}{\partial t}\psi(x,t)$$

Time evolution of the energy of a particle²

$$rac{n_n}{n_p} = rac{e^{(E_p-\mu)/kT}+1}{e^{(E_n-\mu)/kT}+1}$$

Relates the average number of fermions in thermal equilibrium to the energy of a single-particle state³

The behavior of particles is written in the mathematics of quantum mechanics

$$=Ae^{j(kx-\omega t)}$$

² Schrödinger equation

³ Fermi-Dirac statistics

The abstract digital world is written in the mathematics of boolean algebra⁴

1 = True, 0 = False

Α	B	NOT(A AND B)
0	0	1
0	1	1
1	0	1
1	1	0

All digital processing can be made with the NOT(A AND B) function!

⁴ Boolean algebra

People that make digital circuits can easily reuse the work of others

People that make analog circuits can learn from others, but need to deal with the real world on their own

Should we do as much as possible in the abstract digital world?

You must know application before you make the AFE!

A combination of 1'st and 2'nd order stages can synthesize any order filter

First order filter

Q: Try to calculate the transfer function from the figure

Second order filter

order filter.

Bi-quadratic is a general purpose second

$$rac{1}{s+k_0}{s+\omega_o^2}$$

Q: Try to calculate the transfer function from the figure

How do we implement the filter sections?

 $V_o =$

 ω_{ti}

$$rac{I_o}{sC} = rac{\omega_{ti}}{s}V_i$$

$$g_i = rac{G_m}{C}$$

Q: gm = Gm ?

 $sCV_o = G_m Vi$ $H(s)=rac{V_o}{V_i}=rac{G_m}{sC}$

Q: Calculate the transfer function

 $H(s)=rac{k_1s+k_0}{s+w_o}$

Q: Try and calculate the transfer function

$$H(s)=rac{k_2s^2+k_1s+k_0}{s^2+rac{\omega_0}{Q}s+\omega_o^2}$$

$$H(s) = rac{s^2 rac{C_X}{C_X + C_B} + s rac{G_{m5}}{C_X + C_B} + rac{G_{m2}G_{m4}}{C_A(C_X + C_B)}}{s^2 + s rac{G_{m2}}{C_X + C_B} + rac{G_{m1}G_{m2}}{C_A(C_X + C_B)}}$$

Q: Try and figure out how we could make a transconductor

Active-RC

General purpose first order filter

H(s) =

H(s) =

$$+ rac{k_1s+k_0}{s+w_o}$$

$$=rac{-rac{C_{1}}{C_{2}}s-rac{G_{1}}{C_{2}}}{s+rac{G_{2}}{C_{2}}}$$

Q: Try and calculate the transfer function

General purpose biquad

 $H(s) = -\frac{k}{2}$

$$rac{k_2s^2+k_1s+k_0}{s^2+rac{\omega_0}{Q}s+\omega_o^2}$$

The OTA is not ideal

 ω_{ta} is the unity-gain frequency.

$$rac{A_0}{RC)(1+rac{s}{w_{ta}})}$$

where A_0 is the gain of the amplifier, and

Q: In what region does this equation match an ideal integrator 1/sRC response?

A 56 mW Continuous-Time Quadrature Cascaded Sigma-Delta Modulator With 77 dB DR in a Near Zero-IF 20 MHz Band

Fig. 9. NTF and STF of first stage.

igma-delta modulator design.

