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Voltage regulation
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Why do we need voltage regulation
Introduction to linear regulators

Introduction to switched regulators
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Voltage source

Chemistry Voltage [V]

Primary Cell LiFeS2 + Zn/ 0.8-3.6

Alk/MnO2 +

LIMNnO2
Secondary Li-lon 2.5-4.3
Cell
USB - 4.0 - 6.5 (20)



Core

1O

Voltage [V]

5.0

3.0

Node [nm] Voltage [V]
180 1.8
130 1.5

55 1.2
22 0.8
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Name Voltage Min [nA] Max[mA] PWRDR
[dB]
VDD_VBUS 5 10 500 77
VDD_VBAT 4 10 400 76
VDD_IO 1.8 10 50 67
VDD_CORE 0.8 10 350 75
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Figure 1. Regulators used in nRF5340




Linear Regulators
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A Scalable High-Current High-Accuracy Dual-Loop Four-Phase Switching LDO for Microprocessors

A Scalable High-Current High-Accuracy Dual-Loop
Four-Phase Switching LDO for Microprocessors

Xiangyu Mao, Yan Lu™, Senior Member, IEEE, and Rui P. Martins

Abstract— High-performance microprocessors need high cur-
rent (ampere-level), high accuracy, and fast-response power
supplies. Comparing to analog and digital low-dropout (LDO)
regulators, the switching LDO can be a better candidate for such
requirements, as it can drive large power transistor(s) fast and
accurately. However, conventional switching LDOs need large
load capacitance to reduce the output ripple, which restricts
their applications. This article presents a 1.5-A fully-integrated
switching LDO for microprocessors, with an easily scalable load
capability. Here, we introduce three techniques together to relief
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, Fellow, IEEE

since the highest frequency core dictates the minimum Viy
level, other low-frequency cores will waste extra power. Fully-
integrated voltage regulator can supply the local voltage
domain for per-core dynamic voltage and frequency scaling
(DVES), as shown in Fig. 1 [1].

Inductor-based converters usually offer high efficiency with
a high-quality factor (Q) power inductor. However, imple-
menting high-Q inductors on silicon is challenging. In [2],

hiirly cranvartare have haan damanctratad nicina an_rhin indune_
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Fig. 2. LDO control methods.
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Switched Regulators



DC/DC converters convert one DC voltage level to another. Switched-mode DC/DC converters use a FET switchand a
storage element to first store energy, then release it to achieve the desired output voltage. The common arrangements
of switches and storage elements, or topologies, are shown below.
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Inductive DC/DC converters
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Pulse width modulation
(PWM)

Jupyter PWM BUCK model
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https://github.com/wulffern/aic2023/blob/main/jupyter/buck.ipynb
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Jupyter PFM BUCK model

0.08 -
1.03 A
0.06 -
1.02 A
0.04 -
(@)
>
1.01 -
0.02 1
1.00 A
0.00 -
0.99 -
0 2500 5000 7500 10000 0 2500 5000 7500 10000
Time [us] Time [us]

Carsten Wulff 2023 24


https://github.com/wulffern/aic2023/blob/main/jupyter/buck_pfm.ipynb

BUCKSs In JSSC



A 10-MHz 2-800-mA 0.5-1.5-V 90% Peak Efficiency Time-Based Buck Converter With Seamless

Transition Between PWM/PFM Modes

Carsten Wulff 2023
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IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 53, NO. 3, MARCH 2018

A 10-MHz 2-800-mA 0.5-1.5-V 90% Peak
Efficiency Time-Based Buck Converter

With Seamless Transition Between
PWM/PFM Modes

Seong Joong Kim™, Woo-Seok Choi*~, Robert Pilawa-Podgurski, and Pavan Kumar Hanumolu, Member, IEEE

Abstract— Time-based controllers are well suited for imple-
menting both single- and multi-phase wide bandwidth high
switching frequency pulsewidth modulation (PWM)-based dc-dc
converters. They also consume very little quiescent current but
their light load efficiency is severely degraded by switching
losses. We explore pulse frequency modulation (PFM) that is
commonly used to improve light load efficiency in voltage-mode
controllers and extend its operation to time-based controllers.
To maintain high efficiency even in the presence of dynamic
load variations, we present techniques to perform automatic and
seamless switching between PWM/PFM modes. Fabricated in a
65-nm CMOS, the prototype buck converter using the time-based
PWM/PFM control achieves 90% peak efficiency and >80%
efficiency over a load current range of 2-800 mA. Output voltage
changes by less than 40 mV during PWM to PFM transitions.

Index Terms—Buck converter, high switching frequency,
light load efficiency, mode switching, pulse frequency modula-
tion (PFM), pulsewidth modulation (PWM), time-based control.

T TaxrmmnANTTIATTANT

the need for a wide bandwidth error amplifier, a pulsewidth
modulation (PWM) in analog controllers or a high-resolution
analog-to-digital converter (ADC), and a digital PWM in
digital controllers. Time-based controller was also shown to
be very effective for implementing high-efficiency multi-phase
converters [9]. By generating multi-phase control signals with
precisely matched duty cycles, a time-based approach achieves
implicit passive current matching [9] needed for maximizing
efficiency [10], [11]. To summarize, the time-based control
enables high Fsw compact dc—dc converters that consume low
quiescent current and achieve high efficiency over a wide range
of load currents through multi-phase operation. However, large
switching losses that come with high Fgw severely degrade
efficiency under light load conditions. Consequently, efficiency
of state-of-the-art time-based buck converters deteriorates sig-
nificantly at light loads (<50 mA) [8], [9]. Because efficiency

nnder licht lnad condition hag <ionificant imnact on hatterv
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Fig. 1. Loss components and efficiency verses load current in (a) PWM
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Fig. 7.  Simplified buck converter that uses both PWM and PFM modezss.
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