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FIGURE 5. A Heckman diagram representing the interrelationship
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A 3.5-mV Input Single-Inductor Self-Starting Boost

Converter With Loss-Aware MPPT for Efficient
Autonomous Body-Heat Energy Harvesting

Soumya Bose™, Member, IEEE, Tejasvi Anand, Member, IEEE, and Matthew L. Johnston™, Member, IEEE

Abstract— A single-inductor self-starting boost converter is
presented, which is suitable for thermoelectric energy harvesting
from human body heat. In order to extract maximum energy
from a thermoelectric generator (TEG) at small temperature
gradients, a loss-aware maximum power point tracking (MPPT)
scheme was developed, which enables the harvester to achieve
high end-to-end efficiency at low input voltages. The boost
converter is implemented in a 0.18-um CMOS technology and
is more than 75% efficient for a matched input voltage range
of 15-100 mV, with a peak efficiency of 82%. Enhanced power
extraction enables the converter to sustain operation at an input
voltage as low as 3.5 mV. In addition, the boost converter self-
starts with a minimum TEG voltage of 50 mV leveraging a dual-
path architecture without using additional off-chip components.

Index Terms— Battery-less, body heat, cold-start, dc—dc boost
Cavire e @By harvesting, thermoelectric generator (TEG).

for fully autonomous applications, the converter must also self-
start at this low input voltage.

In recent years, a variety of dc—dc boost converter archi-
tectures have been reported to address the challenges posed
by low input voltage. One such boost converter designed for
thermoelectric energy harvesting can operate with an input
voltage as low as 20 mV [3]. However, this architecture lacks
maximum power point tracking (MPPT), reducing the total
extracted output power of the harvester despite high converter
efficiency; the design also requires an additional source of
energy for initial start-up of the converter. Boost converter
architectures sustaining operation with an input voltage as low
as 10 mV have also been demonstrated [4], [5], but these
approaches also fail to self-start at low input voltage, making
them unsuitable for fully battery-less energy harvesting.
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Fig. 1. Self-starting single-inductor boost converter architecture for low-voltage thermoelectric energy harvesting utilizing human body heat.
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#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt

m = le-3
i load = np.linspace(le-5,1e-3,200)

i s = le-12 # saturation current
i ph = 1le-3 # Photocurrent

V_T

1.38e-23%300/1.6e-19 #Thermal voltage

V_D

V_T*np.log((i_ph - i load)/(i_s) + 1)
P load = V_D*i load

plt.subplot(2,1,1)
plt.plot(i_Lload/m,V_D)
plt.ylabel("Diode voltage [mA]")
plt.grid()

plt.subplot(2,1,2)
plt.plot(i_Lload/m,P_load/m)
plt.xlabel("Current Lload [mA]")
plt.ylabel("Power Load [mW]")
plt.grid()
plt.savefig("pv.pdf")
plt.show()
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A Reconfigurable Capacitive Power Converter With
Capacitance Redistribution for Indoor
Light-Powered Batteryless Internet-
of-Things Devices

Hao-Chung Cheng™, Graduate Student Member, IEEE, Po-Han Chen™, Student Member, IEEE, Yu-Tong Su, and
Po-Hung Chen™, Senior Member, IEEE

Abstract—In this article, a reconfigurable capacitive
power converter with capacitance redistribution for indoor
light-powered batteryless Internet-of-Things (IoT) devices is
presented. The proposed converter is capable of redistributing the
capacitance among two charge pump stages to efficiently utilize

the hélgft%%te 1 eneray and further powering milliwatt-powered

amplifier for data transmission. However, with the rising num-
ber of 10T sensing nodes, replacing the batteries requires extra
cost and effort, thus limiting possible applications. Recently,
batteryless IoT devices have been considered as a promising
solution to extend the range of applications. The use of engggy
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A Fully Integrated Split-Electrode SSHC Rectifier
for Piezoelectric Energy Harvesting

Sijun Du™, Member, IEEE, Yu Jia, Member, IEEE, Chun Zhao™, Member, IEEE,
Gehan A. J. Amaratunga, and Ashwin A. Seshia™, Senior Member, IEEE

Abstract—In order to efficiently extract power from piezo-
electric vibration energy harvesters, various active rectifiers have
been proposed in the past decade, which include synchronized
switch harvesting on inductor (SSHI), synchronous electric
charge extraction (SECE), and so on. Although reported active
rectifiers show good performance improvements compared to full-
bridge rectifiers (FBRs), large off-chip inductors are typically
required and the system volume is inevitably increased as a result,
counter to the requirement for system miniaturization. In this
paper, a fully integrated split-electrode synchronized switch

Carsten Wulff 2023

' Talakh & dVe N

environmental vibration 1s periodic and highly unpredictable,
the energy generated by a piezoelectric transducer (PT) can-
not be directly used and an interface circuit i1s needed to
rectify the generated power and provide a stable dc sup-
ply to the loads. Full-bridge rectifiers (FBRs) are widely
employed in most commercially available power management
units (PMU) due to their simplicity and stability; however,

the low power-extraction efficiency of FBRs limits the usable

ontnnt nower for loade esneciallv ninder low ambhient exci-
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Ambient RF Harvesting

Extremely inefficient idea, but may
find special use-cases at short-
distance.

Will get better with beam-forming
and directive antennas

AirFuel

Carsten Wulff 2023

dBm W
30 1
O 1m
-30 lu
-60 1n
-90 1p

34


https://airfuel.org/airfuel-rf/

Assume Prx =1 W (30 dBm) and Prx = 10 uW (-20 dBm)

PTX—PRX—I-20loglo ( Fcf )

D =10 20
Freg D [m]
1dB]
915M -31.7 8.2
2.45G -40.2 3.1
5.80G -47.7 1.3
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Transactions on Power Electronics

Current progress on power management systems for
triboelectric nanogenerators'

Tingshu Hu, Senior Member, IEEE, Haifeng Wang, Member, IEEE, William Harmon,
David Bamgboje, Member, IEEE, Zhong-Lin Wang

Abstract—This paper presents a review on the development of
power management systems (PMS) for triboelectric
nanogenerators (TENGs). The TENG is a most recent technology
to harvest ambient mechanical energy from the environment and
human activities. Its invention was motivated by the prospect of
building self-powered systems. The TENG has several appealing <
advantages, such as, high power density, high voltage output, high %
efficiency at low frequency and low cost. However, due to the
TENG’s unique nonlinear electrical property and capacitive
behavior, the development of its PMS has presented great
challenges as compared to other energy harvesters. The objective

Power Electronic
Management Devices

N

of PMS design has evolved from boosting the peak output power, Fig. 1. Illustration of a self-powered system using energy
to increasing the energy stored in a capacitor, and to increasing harvested with TENGs. A power management system is needed
chetsteadyfseaasoutput power of a resistive load by using a power to convert the TENG’s output into a regulated form suitable for 38

converter. Driven by the need to build self-powered systems, the electronic devices.
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A Fully Energy-Autonomous Temperature-to-Time
Converter Powered by a Triboelectric Energy
Harvester for Biomedical Applications

Joanne Si1 Ying Tan™, Student Member, IEEE, Jeong Hoan Park, Member, IEEE,
Jiamin Li, Student Member, IEEE, Yilong Dong, Student Member, IEEE, Kwok Hoe Chan,

Ghim Wei Ho, and Jerald Yoo ™, Senior Member, IEEE

Abstract—This article presents a fully energy-autonomous
temperature-to-time converter (TTC), entirely powered up by a
triboelectric nanogenerator (TENG) for biomedical applications.
Existing sensing systems either consume too much power to
be sustained by energy harvesting or have poor accuracy.
Also, the harvesting of low-frequency energy input has been
challenging due to high reverse leakage of a rectifier. The
proposed dynamic leakage suppression full-bridge rectifier (DLS-
FBR) reduces the reverse leakage current by more than 1000 x,
enabling harvesting from sparse and sporadic energy sources;
this enables the TTC to function with a TENG as the sole power
source operating at <1-Hz human motion. Upon harvesting
0.6 V in the storage capacitor, the power management unit
(PMU) activates the low-power TTC, which performs one-shot
conversion of temperature to pulsewidth. Designed for biomedical
applications, the TTC enables a temperature measurement range

Carsten WgH§20P83°C to 45 °C. The energy-autonomous TTC is fabricated in

0.18-pm 1P6M CMOS technology, consuming 0.14 pJ/conversion

wirddh O D14 e v orciann fimaa

overheating becomes detrimental to not only device perfor-
mance but more importantly for tissues that suffer from
thermal damage when exposed to high temperatures above
43 °C [1]. Therefore, implanted systems, such as [2] and [3],
require temperature data to ensure patients’ safety. Conversely,
detection of temperatures below meaningful range detectable
on body (<36 °C) could signal a potential detachment in need
of prompt discovery and adjustment. Hence, the collection of
temperature data is vital in biomedical devices for the safety
of the patients and effectiveness of the monitoring devices.
Sensor nodes for biomedical IoT are numerous and widely
distributed. For long-term monitoring, it i1s imperative to
have sustainable and maintenance-free capabilities. One of
the greatest limitations is the heavy reliance on batteries,
an unsustainable source of power that requires replacement or

~1mmhoercnarme racharatnag A1 Haeanrcrae 1F 10 acoanfial fAr anoaroyr
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Fig. 6.

(a) Photograph and (b) model of the TENG.
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(a) Conventional System (b) Proposed System
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Fig. 1. System architecture of (a) conventional temperature sensing system

and (b) proposed energy-autonomous system.
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Energy Power Density Frequency Characteristics
Source

Solar/PV 10uW/cm?(indoor) DC Requires exposure to light
15mW/cm?(outdoor)

RF Energy 0. 1pW/cm?(GSM) 380M ~ 5 Hz Low efficiency for indoor
0.01uW/cm?(WiFi) and out of line-of-sight

Thermal - 40uW/cm? DC Requires high temperature

body heat differences

Piezoelectric 4uW/cm? > 30 Hz Not limited by indoors or

outdoors
Triboelectric 1uW/cm? 1 Hz Not limited by indoors or

(TENG) outdoors
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