TFE4188 - Lecture X **Energy Sources**

Goal

Why do we need energy sources?

Introduction to **Energy Harvesting**

Lithium Battery $1 \text{ year} \Rightarrow 45 \ \mu\text{W/cm}^3$ 10 year $\Rightarrow 3.5 \ \mu\text{W/cm}^3$

Received June 23, 2019, accepted July 3, 2019, date of publication July 15, 2019, date of current version July 31, 2019. *Digital Object Identifier 10.1109/ACCESS.2019.2928523*

Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting

MAHYAR SHIRVANIMOGHADDAM^{D1}, (Member, IEEE), KAMYAR SHIRVANIMOGHADDAM^{D2}, MOHAMMAD MAHDI ABOLHASANI³, MAJID FARHANGI⁴, VAHID ZAHIRI BARSARI⁴, HANGYUE LIU⁴, (Student Member, IEEE), MISCHA DOHLER^{D5}, (Fellow, IEEE), AND MINOO NAEBE²

¹Centre for IoT and Telecommunications, School of Electrical and Information Engineering, The University of Sydney, NSW 2006, Australia ²The Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia

³Chemical Engineering Department, University of Kashan, Kashan, Iran

⁴School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia

⁵Centre for Telecommunications Research, Department of Informatics, King's College London, London WC2B 4BG, U.K.

Corresponding authors: Mahyar Shirvanimoghaddam (mahyar.shm@sydney.edu.au) and Minoo Naebe (minoo.naebe@deakin.edu.au)

This work was supported in part by the Australian Research Council under the Discovery Project Grant DP180100606, in part by the Australian Research Council World Class Future Fiber Industry Transformation Research Hub under Grant H140100018, and in part by the Australian Research Council Training Centre for Light Weight Automotive Structures (ATLAS).

FIGURE 5. A Heckman diagram representing the interrelationship between mechanical, thermal and electrical properties of materials [41].

6

Power Consumption

B-IoT, C-GSM, TE-M, BRA, gFox	
Mechanical Sources	
Thermal Sources	
Radiant Sources	

7

FIGURE 2. Consumed peak power vs. coverage applicable for wireless systems. Low-range wireless technologies operating over extremely low power, which is acceptable for batteries applications, may not be viable in long-range systems. Long-range wireless technologies such as LPWAN require substantial transmit power; therefore, batteries will stay basic parts for IoT devices.

Thermoelectric

Photovoltaic

Piezoelectric

Ambient RF

Triboelectric

9

Thermoelectric

Radioisotope Thermoelectric generator

Thermoelectric generators

A 3.5-mV Input Single-Inductor Self-Starting Boost Converter With Loss-Aware MPPT for Efficient Autonomous Body-Heat Energy Harvesting

Soumya Bose^(D), Member, IEEE, Tejasvi Anand, Member, IEEE, and Matthew L. Johnston^(D), Member, IEEE

Abstract—A single-inductor self-starting boost converter is presented, which is suitable for thermoelectric energy harvesting from human body heat. In order to extract maximum energy from a thermoelectric generator (TEG) at small temperature gradients, a loss-aware maximum power point tracking (MPPT) scheme was developed, which enables the harvester to achieve high end-to-end efficiency at low input voltages. The boost converter is implemented in a 0.18- μ m CMOS technology and is more than 75% efficient for a matched input voltage range of 15–100 mV, with a peak efficiency of 82%. Enhanced power extraction enables the converter to sustain operation at an input voltage as low as 3.5 mV. In addition, the boost converter selfstarts with a minimum TEG voltage of 50 mV leveraging a dualpath architecture without using additional off-chip components.

Index Terms—Battery-less, body heat, cold-start, dc–dc boost **Cerstere Wet**, f energy harvesting, thermoelectric generator (TEG).

for fully autonomous applications, the converter must also selfstart at this low input voltage.

In recent years, a variety of dc–dc boost converter architectures have been reported to address the challenges posed by low input voltage. One such boost converter designed for thermoelectric energy harvesting can operate with an input voltage as low as 20 mV [3]. However, this architecture lacks maximum power point tracking (MPPT), reducing the total extracted output power of the harvester despite high converter efficiency; the design also requires an additional source of energy for initial start-up of the converter. Boost converter architectures sustaining operation with an input voltage as low as 10 mV have also been demonstrated [4], [5], but these approaches also fail to self-start at low input voltage, making them unsuitable for fully battery-less energy harvesting.

Fig. 1. Self-starting single-inductor boost converter architecture for low-voltage thermoelectric energy harvesting utilizing human body heat.

V_{IN} V_{CP} V_{ST}

(b)

Photovoltaic

B

A

$$V_D = V_T ln \bigg(\frac{1}{2} \bigg)$$

 $I_D = I_S \left(e^{rac{V_D}{V_T}} - 1
ight)$

 $I_D = I_{Photo} - I_{Load}$

 $\left(rac{I_{Photo}-I_{Load}}{I_S}+1
ight)$

 $P_{Load} = V_D I_{Load}$

```
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
```

```
m = 1e-3
i_load = np.linspace(1e-5, 1e-3, 200)
i s = 1e-12 # saturation current
i ph = 1e-3 # Photocurrent
V T = 1.38e-23*300/1.6e-19 #Thermal voltage
V_D = V_T*np.log((i_ph - i_load)/(i_s) + 1)
P load = V D*i load
plt.subplot(2,1,1)
plt.plot(i_load/m,V_D)
plt.ylabel("Diode voltage [mA]")
plt.grid()
plt.subplot(2,1,2)
plt.plot(i_load/m,P_load/m)
plt.xlabel("Current load [mA]")
plt.ylabel("Power Load [mW]")
plt.grid()
plt.savefig("pv.pdf")
plt.show()
```


ANYSOLAR

Carsten Wulff 2023

Preliminary

KXOB25-03X4F

Typical SolarMD Performance Data

A Reconfigurable Capacitive Power Converter With Capacitance Redistribution for Indoor Light-Powered Batteryless Internetof-Things Devices

Hao-Chung Cheng^(D), Graduate Student Member, IEEE, Po-Han Chen^(D), Student Member, IEEE, Yu-Tong Su, and Po-Hung Chen^(D), *Senior Member, IEEE*

Abstract—In this article, a reconfigurable capacitive power converter with capacitance redistribution for indoor light-powered batteryless Internet-of-Things (IoT) devices is presented. The proposed converter is capable of redistributing the capacitance among two charge pump stages to efficiently utilize the harvested energy and further powering milliwatt-powered amplifier for data transmission. However, with the rising number of IoT sensing nodes, replacing the batteries requires extra cost and effort, thus limiting possible applications. Recently, batteryless IoT devices have been considered as a promising solution to extend the range of applications. The use of energy

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 56, NO. 10, OCTOBER 2021

Possible approaches for batteryless IoT devices: (a) inductive Fig. 1. converter with two inductors, (b) SIMO inductive converter [5], (c) capacitive converter with hysteresis control [6], (d) two-stage capacitive converter, and (e) proposed redistributable capacitive converter.

Fig. 2. System architecture of the proposed redistributable capacitive converter.

Carsten Wulff 2023		Recycling
		Recycling
	<u> </u>	

Piezoelectric

29

A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting

Sijun Du^(D), *Member, IEEE*, Yu Jia, *Member, IEEE*, Chun Zhao^(D), *Member, IEEE*, Gehan A. J. Amaratunga, and Ashwin A. Seshia^(D), *Senior Member, IEEE*

Abstract—In order to efficiently extract power from piezoelectric vibration energy harvesters, various active rectifiers have been proposed in the past decade, which include synchronized switch harvesting on inductor (SSHI), synchronous electric charge extraction (SECE), and so on. Although reported active rectifiers show good performance improvements compared to fullbridge rectifiers (FBRs), large off-chip inductors are typically required and the system volume is inevitably increased as a result, counter to the requirement for system miniaturization. In this paper, a fully integrated split-electrode synchronized switch environmental vibration is periodic and highly unpredictable, the energy generated by a piezoelectric transducer (PT) cannot be directly used and an interface circuit is needed to rectify the generated power and provide a stable dc supply to the loads. Full-bridge rectifiers (FBRs) are widely employed in most commercially available power management units (PMU) due to their simplicity and stability; however, the low power-extraction efficiency of FBRs limits the usable output power for loads, especially under low ambient exci-31

Fig. 1. Circuit diagrams of (a) FBR, (b) SSHI rectifier, and (c) SSHC rectifier with *k* SCs. Carsten Wulff 2023

Ambient RF

Ambient RF Harvesting

Extremely inefficient idea, but may find special use-cases at short-	dBm
distance.	30
Will get better with beam-forming and directive antennas	0
AirFuel	-30
	-60
	-90

g		
	W	
	1	
	1 m	
	1 u	
	1 n	
	1 p	

Assume P_{TX} = 1 W (30 dBm) and P_{RX} = 10 uW (-20 dBm) $D=10^{rac{P_{TX}-P_{RX}+20log_{10}\left(rac{c}{4\pi f}
ight)}{20}}$

Carsten Wulff 2023

D [m] 8.2 3.1 1.3

Triboelectric generator

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2022.3156871, IEEE Transactions on Power Electronics

Current progress on power management systems for triboelectric nanogenerators¹

Tingshu Hu, Senior Member, IEEE, Haifeng Wang, Member, IEEE, William Harmon, David Bamgboje, *Member, IEEE*, Zhong-Lin Wang

Abstract—This paper presents a review on the development of triboelectric management systems (PMS) for power nanogenerators (TENGs). The TENG is a most recent technology to harvest ambient mechanical energy from the environment and human activities. Its invention was motivated by the prospect of building self-powered systems. The TENG has several appealing advantages, such as, high power density, high voltage output, high efficiency at low frequency and low cost. However, due to the TENG's unique nonlinear electrical property and capacitive behavior, the development of its PMS has presented great challenges as compared to other energy harvesters. The objective of PMS design has evolved from boosting the peak output power, to increasing the energy stored in a capacitor, and to increasing **Chestetearly fs 20123** output power of a resistive load by using a power converter. Driven by the need to build self-powered systems, the

Fig. 1. Illustration of a self-powered system using energy electronic devices.

harvested with TENGs. A power management system is needed to convert the TENG's output into a regulated form suitable for

38

Fig. 3. 4 modes of TENG operation [5]

A Fully Energy-Autonomous Temperature-to-Time Converter Powered by a Triboelectric Energy Harvester for Biomedical Applications

Joanne Si Ying Tan[®], *Student Member, IEEE*, Jeong Hoan Park, *Member, IEEE*, Jiamin Li, *Student Member, IEEE*, Yilong Dong, *Student Member, IEEE*, Kwok Hoe Chan, Ghim Wei Ho, and Jerald Yoo[®], *Senior Member, IEEE*

Abstract—This article presents a fully energy-autonomous temperature-to-time converter (TTC), entirely powered up by a triboelectric nanogenerator (TENG) for biomedical applications. Existing sensing systems either consume too much power to be sustained by energy harvesting or have poor accuracy. Also, the harvesting of low-frequency energy input has been challenging due to high reverse leakage of a rectifier. The proposed dynamic leakage suppression full-bridge rectifier (DLS-FBR) reduces the reverse leakage current by more than $1000 \times$, enabling harvesting from sparse and sporadic energy sources; this enables the TTC to function with a TENG as the sole power source operating at <1-Hz human motion. Upon harvesting 0.6 V in the storage capacitor, the power management unit (PMU) activates the low-power TTC, which performs one-shot conversion of temperature to pulsewidth. Designed for biomedical applications, the TTC enables a temperature measurement range Carsten Wulffine Or of C. The energy-autonomous TTC is fabricated in 0.18-µm 1P6M CMOS technology, consuming 0.14 pJ/conversion with 0.01/1 ms convorsion time

overheating becomes detrimental to not only device performance but more importantly for tissues that suffer from thermal damage when exposed to high temperatures above 43 °C [1]. Therefore, implanted systems, such as [2] and [3], require temperature data to ensure patients' safety. Conversely, detection of temperatures below meaningful range detectable on body (<36 °C) could signal a potential detachment in need of prompt discovery and adjustment. Hence, the collection of temperature data is vital in biomedical devices for the safety of the patients and effectiveness of the monitoring devices. Sensor nodes for biomedical IoT are numerous and widely distributed. For long-term monitoring, it is imperative to have sustainable and maintenance-free capabilities. One of

Sensor nodes for biomedical IoT are numerous and widely distributed. For long-term monitoring, it is imperative to have sustainable and maintenance-free capabilities. One of the greatest limitations is the heavy reliance on batteries, an unsustainable source of power that requires replacement or cumbersome recharging [4]. Hence, it is essential for energy

Fig. 6. (a) Photograph and (b) model of the TENG.

System architecture of (a) conventional temperature sensing system Fig. 1. and (b) proposed energy-autonomous system.

Fig. 2. Overall architecture of the proposed energy-autonomous TTC.

Fig. 3. Concept of the proposed energy-autonomous TTC.

Comparison

Energy Source	Power Density	Frequency	Char
Solar/PV	10µW/cm²(indoor) 15mW/cm²(outdoor)	DC	Requ
RF Energy	0.1µW/cm²(GSM) 0.01µW/cm²(WiFi)	380M ~ 5 Hz	Low and o
Thermal – body heat	40µW/cm²	DC	Requ diffe
Piezoelectric	4µW/cm²	> 30 Hz	Not I outd
Triboelectric (TENG)	1µW/cm²	1 Hz	Not I outd

racteristics

uires exposure to light

efficiency for indoor out of line-of-sight

uires high temperature rences

- limited by indoors or oors
- limited by indoors or loors

References

Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting

A 3.5-mV Input Single-Inductor Self-Starting Boost Converter With Loss-Aware MPPT for Efficient Autonomous **Body-Heat Energy Harvesting**

A Reconfigurable Capacitive Power Converter With Capacitance Redistribution for Indoor Light-Powered **Batteryless Internet- of-Things Devices**

A Fully Integrated Split-Electrode SSHC Rectifier for Piezoelectric Energy Harvesting

Current progress on power management systems for triboelectric nanogenerators

A Fully Energy-Autonomous Temperature-to-Time Converter Powered by a Triboelectric Energy Harvester for **Biomedical Applications**

