date: 2024-02-16

TFE4188 - Lecture 6 Oversampling and Sigma-Delta ADCs

Goal for today

Understand **why** there are different ADCs

Introduction to **oversampling** and **delta-sigma** modulators

A few **examples**

1999, R. Walden: Analog-to-digital converter survey and analysis

Fig. 7. Signal-to-noise ratio according to SNR-bits = (SNR(dB) - 1.76)/6.02. Three sets of curves show performance limiters due to thermal noise, aperture uncertainty, and comparator ambiguity. The Heisenberg limit is also displayed.

1E+11

1997-2023

Below 10 fJ/conv.step is good.

Below 1 fJ/conv.step is extreme.

FOM_{W,hf} [fJ/conv-step]

B. Murmann, ADC Performance Survey

 $FOM_W = rac{P}{2^B f_s}$

People from NTNU have made some of the worlds best ADCs

[1] A Compiled 9-bit 20-MS/s 3.5-fJ/ conv.step SAR ADC in 28-nm FDSOI for Bluetooth Low Energy Receivers

[2] A 68 dB SNDR Compiled Noise-Shaping SAR ADC With On-Chip CDAC Calibration

What makes a state-of-the-art ADC

6

Carsten Wulff 2024

	Weaver [5]	Harpe [9]	Patil [10]	Liu [11]	This	work
Technology (nm)	90	90	28 FDSOI	28	28 FDSOI	
Fsample (MS/s)	21	2	No sampling	100	2	20
Core area (mm ²)	0.18	0.047	0.0032	0.0047	0.00312	
SNDR (dB) SFDR (dBc) ENOB (bits)	34.61 40.81 5.45	57.79 72.33 6.7 - 9.4	40 30 6.35	64.43 75.42 10.41	46.43 61.72 7.42	48.84 63.11 7.82
Supply (V) Pwr (µW)	0.7 1110	0.7 1.64 -3.56	0.65 24	0.9 350	0.47 0.94	0.69 15.87
Compiled	Yes	No 2866	No 27	No 26	Yes 2.5	
FOM (IJ/C.step)	838	2.8 - 0.0	3.1	2.0	2.1	3.3

—

SUN_SAR9B_SKY130NM

B. Murmann, ADC Performance Survey 1997-2022 (ISSCC & VLSI Symposium)

$$FOM_S = SNDR + 10 \log igg(rac{f_s/2}{P}igg)$$

Above 180 dB is extreme

f_{snyq} [Hz]

Quantization

У

See The intermodulation and distortion due to quantization of sinusoids for details

$$e_n(t) = \sum_{p=1}^\infty A_p \sin p \omega t$$

signal as

$$A = \frac{2}{2}$$

where n is the number of bits, we can rewrite as

where p is the harmonic index, and

$$A_p = egin{cases} \delta_{p1}A + \sum_{m=1}^\infty rac{2}{m\pi} J_p(2m\pi A) &, p = ext{ odd} \ 0 &, p = ext{ even} \end{cases}$$

$$\delta_{p1} egin{cases} 1 & ,p=1 \ 0 & ,p
eq 1 \end{cases}$$

and $J_p(x)$ is a Bessel function of the first kind, A is the amplitude of the input signal.

Carsten Wulff 2024

If we approximate the amplitude of the input

$$e_n(t) = \sum_{p=1}^\infty A_p \sin p \omega t$$

$$A_p = \delta_{p1} 2^{n-1} + \sum_{m=1}^\infty rac{2}{m\pi} J_p(2m\pi 2^{n-1}),$$

Carsten Wulff 2024

p = odd

$$\overline{e_n(t)}=0$$

$$\overline{e_n(t)^2} = rac{\Delta^2}{12}$$

$$SQNR = 10 \log igg(rac{A^2/2}{\Delta^2/12} igg) = 10 \log igg(\Delta^2/12 igg)$$

$$SQNR = 10 \log igg(rac{6A^2}{4A^2/2^B} igg) = 20B \log 2 + 100$$

 $SQNR \approx 6.02B + 1.76$

$+ 10 \log 6/4$

Oversampling

in-band quantization noise for a oversampling ratio (OSR)

$$\overline{e_n(t)^2} = rac{\Delta^2}{12OSR}$$

$$SQNR = 10 \log igg(rac{6A^2}{\Delta^2/OSR} igg) = 10 \log igg(rac{6A^2}{\Delta^2} igg) + 10 \log igg)$$

 $SQNR pprox 6.02B + 1.76 + 10\log(OSR)$

 $10\log(2)pprox 3dB$

 $10\log(4)pprox 6dB$

0.5-bit per doubling of OSR

Carsten Wulff 2024

$\log(OSR)$

def oversample(x,OSR): N = len(x) y = np.zeros(N)

```
for n in range(0,N):
    for k in range(0,OSR):
        m = n+k
        if (m < N):
            y[n] += x[m]
return y</pre>
```


Noise Shaping

$$V_{I} - V_{o} = V_{x} \quad V_{v} = V_{x} \quad H(s)$$

$$H(s) = \infty \quad V_{v}$$

$$V_{I} = V_{o} + \frac{V_{o}}{H(s)} = 0 \quad V_{o}$$

Sample domain

y[n] = e[n] + h * (u[n] - y[n])

Z-Domain

$Y(z)=E(z)+H(z)\left[U(z)-Y(z) ight]$

Signal transfer function

Assume U and E are uncorrelated, and E is zero

Y = HU - HY

Assume U is zero

$$STF = rac{Y}{U} = rac{H}{1+H} = rac{1}{1+rac{1}{H}}$$

Noise transfer function

$Y = E + HY \rightarrow NTF = rac{1}{1+H}$

Combined transfer function

Y(z) = STF(z)U(z) + NTF(z)E(z)

(z)

First-Order Noise-Shaping

$$H(z) = \frac{1}{z - 1}$$
$$STF = \frac{1/(z - 1)}{1 + 1/(z - 1)} = \frac{1}{z} = z^{-1}$$
$$NFT = \frac{1}{1 + 1/(z - 1)} = \frac{z - 1}{z} = 1 - \frac{1}{z}$$

$$z=e^{sT} \stackrel{s=j\omega}{
ightarrow} e^{j\omega T}=e^{j2\pi f/f_s}$$

$$NTF(f) = 1 - e^{-j2\pi f/f_s}$$

$$=rac{e^{j\pi f/f_s}-e^{-j\pi f/f_s}}{2j} imes 2j imes e^{-j\pi f}$$

$$= \sin rac{\pi f}{f_s} imes 2j imes e^{-j\pi f/f_s}$$

$$|NFT(f)| = \left|2\sin\!\left(rac{\pi f}{f_s}
ight)
ight|$$

 f/f_s

$$P_s = A^2/2
onumber \ P_s = \int_{-f_0}^{f_0} rac{\Delta^2}{12} rac{1}{f_s} igg[2 \sinigg(rac{\pi f}{f_s}igg) igg]^2 ds$$

$SQNR = 6.02B + 1.76 - 5.17 + 30\log(OSR)$

•

Carsten Wulff 2024

dt

SONR and ENOB

 $SQNR_{nyguist} \approx 6.02B + 1.76$

 $SQNR_{oversample} pprox 6.02B + 1.76 + 10 \log(OSR)$

 $SQNR_{\Sigma\Delta1}pprox 6.02B+1.76-5.17+30\log(OSR)$

 $SQNR_{\Sigma\Lambda2} \approx 6.02B + 1.76 - 12.9 + 50 \log(OSR)$

ENOB = (SQNR - 1.76)/6.02

Assume 1-bit quantizer, what would be the maximum ENOB?

OSR	Oversampling	First-Order
4	2	3.1
64	4	9.1
1024	6	15.1

Second Order

3.9

13.9

23.9

u is discrete time, continuous value input M = len(u) y_sd = np.zeros(M) x = np.zeros(M) for n in range(1,M): x[n] = x[n-1] + (u[n]-y_sd[n-1]) y_sd[n] = np.round(x[n]*2**bits + dither*np.random.randn()/4)/2**bits

Resonators in Open-Loop Sigma-Delta Modulators

A 68 dB SNDR Compiled Noise-Shaping SAR ADC With On-Chip CDAC Calibration

Design Considerations for a Low-Power Control-Bounded A/D Converter

Figure 3.1: The general structure of the Leapfrog ADC

A 56 mW Continuous-Time Quadrature Cascaded Sigma-Delta Modulator With 77 dB DR in a Near Zero-IF 20 MHz Band

Fig. 9. NTF and STF of first stage.

igma-delta modulator design.

Analogue-to-digital converter

